The conversion method between hexadecimal and decimal numbers is the same as the conversion method between octal and decimal numbers. I tried to make the explanation as easy as possible. I provide 2 tables, one for calculated powers of 16 and the other for hexadecimal numbers equivalent to decimal numbers.

Key Questions:

  • Conversion between decimal and hexadecimal numbers.
  • How to convert decimal fractions into hexadecimal fractions.
  • How to convert hexadecimal fractions into decimal fractions.

164

163

162

161

160

16-1

16-2

65536

4096

256

16

1

0.0625

0.0039

hexadecimal and decimal number conversion

Decimal numbers and their equivalent hexadecimal numbers

Decimal to Hexadecimal Conversion:

As we see in decimal to binary conversion and decimal to octal conversion when converting from a decimal to a binary number system, we use repeated division by 2. If the decimal-to-octal number system, we use repeated division by 8. This time we are working with hexadecimal numbers, so the repeated division by 16 method is used. And if we have a mantissa, or fractional part, then we use repeated multiplication by 16 method. Let’s start with examples.

 

Example#01:4859)10= ?)16

4859/16 =303 remainder 11)10=B)16

303/16= 18 remainder 15)10=F)16

18/16=1 remainder 2)10=2)16

Look at the highlighted numbers 12FB)16

Answer 4859)10= 12FB)16

Example#02:23456.235)10= ?)16

Solve integer part using division by 16

23456/16=1466 remainder 0 =0)16

1466/16=91 remainder 10)10=)16

91/16=5 reminder 11)10=B)16

Look at the highlighted numbers 5BA0)16

Mantissa will be calculated by using repeated multiplication by 16

0.235*16=3.76 (most significant digit)

0.76*16=12.16)10=C.12)16

0.16*16=2.56. (least significant digit)

0.235)10=0.3C2)16

Answer 23456.235)10= 5BA0.3C2)16

Example#03:1359.79)10= ?)16

For integers, use repeated division by 16

1359/16 =84 remainder 15)10=F)16

84/16= 5 remainder 4

1359)10=54F)16

For mantissa, use repeated multiplication by 16

0.79*16=12.64 = C.64)16

0.64*16=10.24 = A.24)16

0.79)16=0.CA)16

Answer 1359.79)10= 54F.CA)16

Hexadecimal to Decimal Conversion:

As we know, when converting from any number system to a decimal number system, we use the sum of weights method. As for binary numbers, the sum of weights is a power of 2. For octal numbers, the sum of weights is the power of 8. Similarly, for hexadecimal numbers, the sum of weights is a power of 16.

Example#01: 12FB)16= ?)10

12FB)16=(1*163)+(2*162)+(F*161)+(B*160)

=(1*4096)+(2*256)+(15*16)+(11*1)

=4096+512+240+11

=4859)10

Answer 12FB)16= 4859)10

Example#02: 5BA0.3C2)16= ?)10

5BA0.3C2)16=(5*163)+(B*162)+(A*161)+(0*160).(3*16-1)+(C*16-2)+(2*16-3)

=(5*4096)+(11*256)+(10*16)+(0*1).(3*0.0625)+(12*0.00390625) neglect 16-3 which is too small.

=20480+5632+160.+0.1875+0.046875

=23455.23)10

Answer 5BA0.3C2)16= 4859)10

Example#03: 54F.CA)16= ?)10

54F.CA)16= (5*162)+(4*161)+(F*160).(C*16-1)+(A*16-2)

=(5*256)+(4*16)+(15*1).+(12*0.625)+(10*0.0039)

=1280+64+15.75+0.039

=1359.79)10

Answer 54F.CA)16= 1359.79)10

Leave a comment

Your email address will not be published. Required fields are marked *