Before starting this topic, you must know about De Morgan’s Law. To find a complement of a Boolean function or expression, simply apply De Morgan’s Law. 

Outline:

  • How to find the complement of a Boolean expression or function and prove results with the help of a truth table
  • How to find the dual of a Boolean expression of function and prove results with the help of a truth table
  • How to find out the logically equivalent Boolean expressions. Prove your results with the help of truth tables and logic circuits.

 

How to find out the dual && Complement of a Boolean Function | Expression:

For Dual:

It involves the following steps

The dual has exactly the same results in the truth table but the logic is opposite.

For complement:

It involves three steps. First two steps are similar to the above. 

  • Interchange of AND and OR operators
  • Interchange of 1’s and 0’s
  • Complement each literal

 

Starting with the simplest possible examples. Rest of the explanation will be easy to understand.

Find the dual and complement of the A . B

  • Let’s suppose, A . B is in the positive logic. It means logic high is 1 and logic low is 0
  • Dual is A + B. The original cricut/ expression (A.B) is in the positive logic then its dual should be in the negative logic
  • Complement is A’ + B’




Positive Logic AND Gate

 

A

B

A .B

Logic

1

0

0

0

L

2

0

1

0

L

3

1

0

0

L

4

1

1

1

H

For dual Interchange every 1 with 0 and 0 with 1 (change of logic,  “0” means logic high and “1” means logic low)

Dual of A . B is the negative Logic OR Gate

 

A

B

A + B

Logic

1

0

0

0

H

2

0

1

0

H

3

1

0

0

H

4

1

1

1

L

For complement, each literal should be complemented

Complement of A . B is the negative input OR Gate

 

A

B

A’

B’

A’ + B’

Logic

1

0

0

1

1

1

H

2

0

1

1

0

1

H

3

1

0

0

1

1

H

4

1

1

0

0

0

L

Example # 1: Find out the dual and complement of the given boolean expression (AB’ +C)D’ + E

Dual:

= AB’D’ + CD’ + E

= (A + B’ + D’)(C + D’)E

Complement:

= (A’ + B + D)(C’ + D)E’

Complement and dual of logic circuit

 Practice Problems:


 

Example # 2: Find out the dual and complement of the given boolean expression XY’ + X’Y

Dual:

Interchange AND and OR operators.

= (X + Y’)(X’ + Y)

Complement:

Complement each literal.

= (X’ + Y)(X + Y’)

 

Dual and complement of digital circuit

 

 

X

Y

X’

Y’

XY’ + X’Y

(X + Y’)(X’ + Y)

(X’ + Y)(X + Y’)

0

0

1

1

0 (L)

0 (H)

1 (H)

0

1

1

0

1 (H)

1 (L)

0 (L)

1

0

0

1

1 (H)

1 (L)

0 (L)

1

1

0

0

0 (L)

0 (H)

1 (H)

Example # 3: Find out the dual and complement of the given boolean expression

AB(C’D + CD’) + A’B'(C’ + D)(C + D’)

Dual:

= [(A + B)+(C’ + D)(C + D’)] [(A’ + B’) + C’D + CD’]

Complement:

= [(A’ + B’)+(C + D’)(C’ + D)] [(A + B) + CD’ + C’D]

 

A

B

C

D

AB(C’D+CD’) + A’B'(C’+D) (C+D’)

(A+B)+(C’+D) (C+D’)][(A’+B’) +C’D+CD’

[(A’+B’)+(C + D’)(C’ + D)] [(A + B) + CD’ + C’D]

0

0

0

0

1 (H)

1 (L)

0 (L)

0

0

0

1

0 (L)

0 (H)

1 (H)

0

0

1

0

0 (L)

0 (H)

1 (H)

0

0

1

1

1 (H)

1 (L)

0 (L)

0

1

0

0

0 (L)

0 (H)

1 (H)

0

1

0

1

0 (L)

0 (H)

1 (H)

0

1

1

0

0 (L)

0 (H)

1 (H)

0

1

1

1

0 (L)

0 (H)

1 (H)

1

0

0

0

0 (L)

0 (H)

1 (H)

1

0

0

1

0 (L)

0 (H)

1 (H)

1

0

1

0

0 (L)

0 (H)

1 (H)

1

0

1

1

0 (L)

0 (H)

1 (H)

1

1

0

0

0 (L)

0 (H)

1 (H)

1

1

0

1

1 (H)

1 (L)

0 (L)

1

1

1

0

1 (H)

1 (L)

0 (L)

1

1

1

1

0 (L)

0 (H)

1 (H)

Example # 4: Find out the dual and complement of the given boolean expression

(X + Y’ + Z)(X’ + Z’)(X + Y)

Dual:

= (XY’Z) + (X’Z’) + (XY) 

Complement:

= (X’YZ’) + (XZ) + (X’Y’)

 

X

Y

Z

(X+Y’+Z) (X’+Z’) (X+Y)

(XY’Z) + (X’Z’) + (XY)

(X’YZ’) + (XZ) + (X’Y’)

 

0

0

0

0 (L)

0 (H)

1 (H)

0

0

1

0 (L)

0 (H)

1 (H)

0

1

0

0 (L)

0 (H)

1 (H)

0

1

1

1 (H)

1 (L)

0 (L)

1

0

0

1 (H)

1 (L)

0 (L)

1

0

1

0 (L)

0 (H)

1 (H)

1

1

0

1 (H)

1 (L)

0 (L)

1

1

1

0 (L)

0 (H)

1 (H)

Example # 5: Find out the dual and complement of the given boolean expression (ABC)’ + (D’ + E)’

Dual:

First simplify using De Morgan’s Law:

= (A’ + B’ + C’) + (DE’)

= (A’ . B’ . C’) . (D + E’)

 

Complement:

= (A . B . C) . (D’ + E)

 

 

 

A

B

C

D

E

(A+B+C)’+(D’E)

(A’B’C’)(D + E’)

(ABC)(D’ + E)

0

0

0

0

0

1 (H)

1 (L)

0 (L)

0

0

0

0

1

1 (H)

1 (L)

0 (L)

0

0

0

1

0

1 (H)

1 (L)

0 (L)

0

0

0

1

1

1 (H)

1 (L)

0 (L)

0

0

1

0

0

1 (H)

1 (L)

0 (L)

0

0

1

0

1

1 (H)

1 (L)

0 (L)

0

0

1

1

0

1 (H)

1 (L)

0 (L)

0

0

1

1

1

1 (H)

1 (L)

0 (L)

0

1

0

0

0

1 (H)

1 (L)

0 (L)

0

1

0

0

1

1 (H)

1 (L)

0 (L)

0

1

0

1

0

1 (H)

1 (L)

0 (L)

0

1

0

1

1

1 (H)

1 (L)

0 (L)

0

1

1

0

0

1 (H)

1 (L)

0 (L)

0

1

1

0

1

1 (H)

1 (L)

0 (L)

0

1

1

1

0

1 (H)

1 (L)

0 (L)

0

1

1

1

1

1 (H)

1 (L)

0 (L)

1

0

0

0

0

1 (H)

1 (L)

0 (L)

1

0

0

0

1

1 (H)

1 (L)

0 (L)

1

0

0

1

0

1 (H)

1 (L)

0 (L)

1

0

0

1

1

1 (H)

1 (L)

0 (L)

1

0

1

0

0

1 (H)

1 (L)

0 (L)

1

0

1

0

1

1 (H)

1 (L)

0 (L)

1

0

1

1

0

1 (H)

1 (L)

0 (L)

1

0

1

1

1

1 (H)

1 (L)

0 (L)

1

1

0

0

0

1 (H)

1 (L)

0 (L)

1

1

0

0

1

1 (H)

1 (L)

0 (L)

1

1

0

1

0

1 (H)

1 (L)

0 (L)

1

1

0

1

1

1 (H)

1 (L)

0 (L)

1

1

1

0

0

0 (L)

0 (H)

1 (H)

1

1

1

0

1

0 (L)

0 (H)

1 (H)

1

1

1

1

0

1 (H)

1 (L)

0 (L)

1

1

1

1

1

0 (L)

0 (H)

1 (H)

Example # 6: Find out the dual and complement of the given boolean expression

[(A + B)C]’

Dual:

= (A + B)’ + C’

= A’B’ + C’

= (A’ + B’)C’

Complement:

= (A + B)C

 

 

A

B

C

[(A + B)C]’

(A’ + B’)C’

AB + C

0

0

0

1 (H)

1 (L)

0 (L)

0

0

1

1 (H)

1 (L)

0 (L)

0

1

0

1 (H)

1 (L)

0 (L)

0

1

1

0 (L)

0 (H)

1 (H)

1

0

0

1 (H)

1 (L)

0 (L)

1

0

1

0 (L)

0 (H)

1 (H)

1

1

0

1 (H)

1 (L)

0 (L)

1

1

1

0 (L)

0 (H)

1 (H)

Example # 7: Find out the dual and complement of the given boolean expression

(A + B + C)’ + (D’E)’

Dual:

Apply De Morgan’s Law

= (A’B’C’) + (D + E’)

Interchange OR to AND or vice versa.

= (A’ + B’ + C’) . (D . E’)

Complement:

= (A + B + C). (D’ . E)

 

 

A

B

C

D

E

(A’+B’+C’)(D’E)

(A’B’C’)(D + E’)

(ABC)(D’ + E)

0

0

0

0

0

1 (H)

1 (L)

0 (L)

0

0

0

0

1

1 (H)

1 (L)

0 (L)

0

0

0

1

0

1 (H)

1 (L)

0 (L)

0

0

0

1

1

1 (H)

1 (L)

0 (L)

0

0

1

0

0

1 (H)

1 (L)

0 (L)

0

0

1

0

1

0 (L)

0 (H)

1 (H)

0

0

1

1

0

1 (H)

1 (L)

0 (L)

0

0

1

1

1

1 (H)

1 (L)

0 (L)

0

1

0

0

0

1 (H)

1 (L)

0 (L)

0

1

0

0

1

0 (L)

0 (H)

1 (H)

0

1

0

1

0

1 (H)

1 (L)

0 (L)

0

1

0

1

1

1 (H)

1 (L)

0 (L)

0

1

1

0

0

1 (H)

1 (L)

0 (L)

0

1

1

0

1

0 (L)

0 (H)

1 (H)

0

1

1

1

0

1 (H)

1 (L)

0 (L)

0

1

1

1

1

1 (H)

1 (L)

0 (L)

1

0

0

0

0

1 (H)

1 (L)

0 (L)

1

0

0

0

1

0 (L)

0 (H)

1 (H)

1

0

0

1

0

1 (H)

1 (L)

0 (L)

1

0

0

1

1

1 (H)

1 (L)

0 (L)

1

0

1

0

0

1 (H)

1 (L)

0 (L)

1

0

1

0

1

0 (L)

0 (H)

1 (H)

1

0

1

1

0

1 (H)

1 (L)

0 (L)

1

0

1

1

1

1 (H)

1 (L)

0 (L)

1

1

0

0

0

1 (H)

1 (L)

0 (L)

1

1

0

0

1

0 (L)

0 (H)

1 (H)

1

1

0

1

0

1 (H)

1 (L)

0 (L)

1

1

0

1

1

1 (H)

1 (L)

0 (L)

1

1

1

0

0

1 (H)

1 (L)

0 (L)

1

1

1

0

1

0 (L)

0 (H)

1 (H)

1

1

1

1

0

1 (H)

1 (L)

0 (L)

1

1

1

1

1

1 (H)

1 (L)

0 (L)

Example # 8: Find out the dual and complement of the given boolean expression

X’YZ’ + X’Y’Z

Dual:

= (X’ + Y + Z’) . (X’ + Y’ + Z)

Complement:

= (X + Y’ + Z) . (X + Y + Z’)

  

X

Y

Z

X’

Y’

Z’

X’YZ’ + X’Y’Z

(X’+Y+Z’).(X’+Y’+Z)

(X+Y’+Z).(X+Y+Z’)

0

0

0

1

1

1

0 (L)

0 (H)

1 (H)

0

0

1

1

1

0

1 (H)

1 (L)

0 (L)

0

1

0

1

0

1

1 (H)

1 (L)

0 (L)

0

1

1

1

0

0

0 (L)

0 (H)

1 (H)

1

0

0

0

1

1

0 (L)

0 (H)

1 (H)

1

0

1

0

1

0

0 (L)

0 (H)

1 (H)

1

1

0

0

0

1

0 (L)

0 (H)

1 (H)

1

1

1

0

0

0

0 (L)

0 (H)

1 (H)

End Note:

Though it was a straightforward topic, I prepared it with many effects. It takes a lot of time, and it is really difficult to get the time from my busy schedule. I rechecked the topic several times, but still, there are chances of mistakes. If you find any mistakes please notify me. I hope this topic will be helpful. Thank you!

Comments (3)

  1. Anonymous

    Reply

    This is one of the best books on dual complementation so far. I really love this

Leave a comment

Your email address will not be published. Required fields are marked *